2016 Taiwan Selection Test for IWYMIC Preliminary Round (Time Allowed : 2 hours)

Section A: Questions requiring answers only. Each question is worth 5 marks.

1. What is the remainder when 2^{2016} is divided by 13 ?

Ans: \qquad
2. Class A has $2 m$ boys and 13 girls while class B has 7 boys and $2 n$ girls, where m and n are positive integers. Each student pays the same positive integral number of dollars into a fund, and the total amount of money raised by each class is $2 m n+7 m+13 n+84$ dollars. What is the number of dollars paid by each student?

Ans : \qquad
3. In a deck of 52 cards, each is 6 cm by 4 cm . Some of them are put together, without overlap, to form the largest possible square. Two adjacent cards must share a complete side of equal length. What is the number of cards left unused?

Ans: \qquad
4. How many different positive divisors does the following number have?

$$
100^{2}-99^{2}+98^{2}-97^{2}+\cdots+42^{2}-41^{2}
$$

Ans : \qquad
5. B and C are points on a circle O with diameter $A D$, and on opposite sides of $A D$. H is the point on $B C$ such that $A H$ is perpendicular to $B C$. If $A H=32$, $B H=16 \sqrt{5}, C H=2 \sqrt{185}$, what is the value of $A D \times A H$?

Ans: \qquad
6. The positive integers are arranged in zig-zag fashion starting from the top left corner, as shown in the diagram below. The first four numbers in the diagonal from the top left are 1, 3, 7 and 13 . What is the first number on this diagonal which is greater than 50 ?

1	2	9	10	\cdots
4	3	8	11	
5	6	7	12	
16	15	14	13	\cdots
\vdots			\vdots	

7. B and C are points on a semicircle with diameter $A D$, and B lies on the arc $A C$. If $A D=4 \mathrm{~cm}$ and $A B=B C=1 \mathrm{~cm}$, what is the length of $C D$, in cm ?

Ans: \qquad
8. What is the value of the positive number a if the difference between the two solutions of the equation $x^{2}+a x+1=0$ is 2 ?

Ans: \qquad
9. D is a point on the side $A B$ of triangle $A B C$ such that $A D=6 \mathrm{~cm}$ and $\angle A C D=2 \angle D C B=\angle B=45^{\circ}$. What is the length of $B D$, in cm ?

Ans:
cm
10. Let $a_{1}, a_{2}, a_{3}, \cdots$, be real numbers such that for every positive integer n, $a_{1}+2 a_{2}+3 a_{3}+\cdots+n a_{n}=(n+1)^{3}$. What is the value of the expression $\frac{1}{a_{1}-1}+\frac{1}{2 a_{2}-1}+\cdots+\frac{1}{49 a_{49}-1}$?
\qquad
11. P, Q and R are the respective midpoints of the sides $A B, C D$ and $D A$ of a square $A B C D$. The segment $B R$ intersects $A C$ and $P Q$ at E and F respectively, and the segment $P Q$ intersects $A C$ and $R C$ at G and H respectively. If the total area of triangles $B F P, E F G$ and $C G H$ is m and the area of $A B C D$ is n, what is the value of $\frac{m}{n}$?

Ans: \qquad
12. In a row of counters, each is either red or blue, and there is at least one of each color. Two counters with exactly 6 or 9 other counters in between must be of the same color. What is the maximum number of counters in this row?

Ans: \qquad

Section B: Problems requiring full solutions. Each problem is worth $\mathbf{2 0}$ marks.

1. Let a and b be the legs of a right triangle and c the hypotenuse, where $a \neq b$. Let x and y be real numbers such that $\frac{x}{2 a^{2}}+\frac{y}{c^{2}}=1$ and $\frac{x}{c^{2}}+\frac{y}{2 b^{2}}=1$, prove that $x+y=2 c^{2}$ 。
2. For any positive integer n, let $f(n)$ denote the sum of its digits. For example, $f(23)=2+3=5$. How many positive integers n are there such that $\frac{n}{f(n)}>8$?
3. Each of the numbers from 1 to 36 is placed in a different square of a 6 by 6 table. Consecutive numbers must be placed in squares sharing a common side. Prove that the sum of the 6 numbers on one of the diagonals is at most 174 , and find a placement for which this maximum value is attained.

